Monotone normality and nabla products
نویسندگان
چکیده
Roitman's combinatorial principle $\Delta$ is equivalent to monotone normality of the nabla product, $\nabla (\omega +1)^\omega$. If $\{ X_n : n\in \omega\}$ a family metrizable spaces and $\nabla_n X_n$ monotonically normal, then hereditarily paracompact. Hence, if holds box product $\square +1)^\omega$ Large fragments hold in $\mathsf{ZFC}$, yielding large subspaces (\omega+1)^\omega$ that are `really' normal. Countable products which respectively: arbitrary, size $\le \mathfrak{c}$, or separable, normal under $\mathfrak{b}=\mathfrak{d}$, $\mathfrak{d}=\mathfrak{c}$ Model Hypothesis. It consistent independent A(\omega_1)^\omega$ (\omega_1+1)^\omega$ (or paracompact, normal). In $\mathsf{ZFC}$ neither A(\omega_2)^\omega$ nor (\omega_2+1)^\omega$
منابع مشابه
Resolvability and Monotone Normality
A space X is said to be κ-resolvable (resp. almost κ-resolvable) if it contains κ dense sets that are pairwise disjoint (resp. almost disjoint over the ideal of nowhere dense subsets). X is maximally resolvable iff it is ∆(X)-resolvable, where ∆(X) = min{|G| : G 6= ∅ open}. We show that every crowded monotonically normal (in short: MN) space is ω-resolvable and almost μ-resolvable, where μ = mi...
متن کاملAcyclic monotone normality
Moody, P. J. and A. W. Roscoe, Acyclic monotone normality, Topology and its Applications 47 (1992) 53-67. A space X is acyclic monotonically normal if it has a monotonically normal operator M(., .) such that for distinct points x,,, ,x._, in X and x, =x,], n::i M(x,, X\{x,+,}) = (d. It is a property which arises from the study of monotone normality and the condition “chain (F)“. In this paper i...
متن کاملMonotone versions of δ-normality
According to Mack a space is countably paracompact if and only if its product with [0, 1] is δ-normal, i.e. any two disjoint closed sets, one of which is a regular Gδ-set, can be separated. In studying monotone versions of countable paracompactness, one is naturally led to consider various monotone versions of δ-normality. Such properties are the subject of this paper. We look at how these prop...
متن کاملNabla discrete fractional calculus and nabla inequalities
Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .
متن کاملTotally Monotone Core and Products of Monotone Measures
Several approaches to the product of non-additive monotone measures (or capacities) are discussed and a new approach is proposed. It starts with the M obius product [E. Hendon, H.J. Jacobsen, B. Sloth, T. Tranñs, The product of capacities and belief functions, Mathematical Social Sciences 32 (1996) 95±108] of totally monotone measures and extends it by means of a supremum to general monotone m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2021
ISSN: ['0016-2736', '1730-6329']
DOI: https://doi.org/10.4064/fm926-10-2020